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Abstract—Image super-resolution (SR) methods essentially
lead to a loss of some high-frequency (HF) information when
predicting high-resolution (HR) images from low-resolution (LR)
images without using external references. To address this issue,
we additionally utilize online retrieved data to facilitate image
SR in a unified deep framework. A novel dual high-frequency
recovery network (DHN) is proposed to predict an HR image
with three parts: an LR image, an internal inferred HF (IHF)
map (HF missing part inferred solely from the LR image) and
an external extracted HF (EHF) map. In particular, we infer
the HF information based on both the LR image and similar HR
references which are retrieved online. For the EHF map, we align
the references with affine transformation and then in the aligned
references, part of HF signals are extracted by the proposed DHN
to compensate for the HF loss. Extensive experimental results
demonstrate that our DHN achieves notably better performance
than state-of-the-art SR methods.

I. INTRODUCTION

Image super-resolution (SR) aims to estimate a high-

resolution (HR) image from low-resolution (LR) observations.

In essence, due to the information loss in the image degrada-

tion process, SR is an ill-posed problem. The earliest works,

image interpolation, estimate the HR image based on local

statistics of the LR image. Typical methods include bilinear,

bicubic and new edge directed interpolation that predict the

HR pixels by utilizing the spatial relationship between LR and

HR pixels. Later on, many successive works [1], [2] regard the

image SR as a Maximum-a-posteriori estimation and propose

to impose various priors to constrain the inverse estimation

of image SR. In these methods, priors and constraints are

typically achieved in a heuristic way. Thus, it is insufficient

to represent the diversified patterns of natural images.

Learning based methods obtain a mapping between LR and

HR images based on a large training set with dynamic learned

prior knowledge. Sparse representation based methods such as

[3] learn the map by building an LR and HR patch mapping

dictionary. Neighbor embedding (NE) methods linearly com-

bine the HR neighbors to infer the HR image. Timofte et al.
[4] proposed an adjusted anchored neighborhood regression

method for image SR. Li et al. [5] proposed a neighbor

preserving based method which specially utilizes HR reference

patches only in reconstructing the high frequency region of LR

images. Recently, deep-learning based methods [6], [7], [8],
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[9], [10] are proposed. SRCNN is the first method [6] that

utilizes a three-layer convolutional network for image SR. In

[7], the sparse prior is incorporated into the network. Then,

the residual learning [8] and sub-band recovery with edge

guidance [9] networks are constructed to recover HF signal

and offer state-of-the-art performance.

Despite impressive results achieved by the learning-based

methods, some HF information has still been lost because of

the ill-posed nature of the image SR and the problem that

mean squared error leads to regression to mean [11]. As a

result, a few methods have recently been proposed, which

additionally compensate for HF information loss with online

retrieved HR references. Yue et al. [12] directly utilized the

references to enhance the SR result by patch matching and

patch blending. Li et al. [13] used the retrieved HR image

patches to learn more accurate sparse distribution. Liu et al.
[14] utilized a group-structured sparse representation to further

use the nonlocal dependency information of HR references.

However, in these methods there are still several important

issues not being fully considered. For example, their fusion

methods do not effectively extract external HF information for

compensation, which may even bring artifacts. Besides, they

did not make full use of the internal redundancy to benefit the

recovery of HF information.

To address the aforementioned issues, we propose a unified

deep network that additionally utilizes online retrieved data to

facilitate image SR. Our work can efficiently extract an HF

map from multiple HR references that are retrieved based on

the intermediately inferred SR image.

Contributions of this paper are as follows: 1) It is the first

work that efficiently extracts high-frequency information from

the HR reference and successfully compensate for the HF

information loss of the SR result with the deep framework. 2)

We show the proposed method is capable to model internal and

external images jointly, achieving a more accurate and robust

fusion of internal and external information for HF information

recovery. 3) Compared with both previous deep learning-based

methods and online compensation SR methods, our approach

has offered new state-of-the-art performance.

The rest of the article is organized as follows. Sec. II

illustrates our DHN network. Details of utilizing the EHF

map for compensation are introduced in Sec. III. Experimental

results are shown in Sec. IV and concluding remarks are given

in Sec. V.
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Fig. 1. Framework of the proposed SR method based on the dual high-frequency recovery network (DHN) with online compensation. h × w × ∗ means
size of the convolution layer and ∗ represents channel numbers. s is the magnification factor. Image Ĩl is simply up-sampled form Il. Ilt is the intermediate
image derived by IHN and Ih is the further enhanced result image.

II. DUAL HIGH-FREQUENCY RECOVERY NETWORK

Given an LR image I l, we predict the HR image Ih

from I l with the reference of K retrieved HR reference

images {Ir1 , Ir2 , ..., IrK} by our dual high-frequency recovery

network (DHN). Architecture of the proposed DHN has been

illustrated in Fig. 1. DHN consists of two components called

internal high-frequency inference network (IHN) and external

high-frequency compensation network (EHN), respectively.

IHN infers missing HF information of I l merely based on

internal data in I l. Then, the intermediate SR image I lt is gen-

erated by combining the internal inferred HF (IHF) map and

the simply up-smapled LR image Ĩ l. EHN further enhances

the final SR result Ih by adding the external extracted HF

(EHF) map obtained from the aligned retrieved HR reference

images {Îr1 , Îr2 , ..., ÎrK} to the intermediate image I lt .

A. Internal High-Frequency Inference Network

The first component IHN proposed by [9] is utilized to

initially reconstruct the LR image I l with its own information.

As shown in Fig.1, I l and its edge map, which is extracted by

applying a hand-crafted edge detector, are utilized as the input

of IHN. Then, the recurrent network of IHN estimates the IHF

map from the above input. IHN also predicts an HR edge map,

which is used to further guide the HF map estimation.

With the inferred IHF map, the intermediate result image

I lt is then generalized as follows:

I lt = Ĩ l ⊕ ϕ(I l), (1)

where ⊕ is the sum operation and ϕ(I l) represents the process

that IHN infers IHF map from LR image I l. Ĩ l is the image

that simply up-sampled from I l. We then define the loss of

IHN as the combination of loss of the predicted HR edge and

I lt . The loss is measured by the mean squared error (MSE)

with the ground truth signal.

B. External High-Frequency Compensation Network

IHN works well in predicting the HF map from an LR

image. However, during this process not all HF information

can be well recovered. This inspires us to construct EHN to

further extract the significant EHF map Îrm from each HR

reference Îr. Note that during training process Îr is generated

from the ground truth HR image.

It’s common for an LR image and its reference image

to have illumination and color differences. Moreover, there

is much useless low-frequency information in the reference

that may affect HF information extraction. Therefore we take

different measures to improve the robustness of the process

of extracting Îrm. First, contrast of the label images is ad-

ditionally adjusted to simulate the common illumination and

color differences in training process. Besides, we alternatively

utilize the difference image between Îr and its intermediate

SR image Îrt as the input of EHN, rather than directly input

the information of Îr. Îrt is obtained through up-sampling the

down-sampled image of Îr by IHN. The difference image is

chosen because of its high efficiency in reducing illumination

and color differences and removing redundant low-frequency

information.

Then, EHN extracts the EHF map from the input by the

recurrent network. Final reconstructed result Ih is derived by:

Ih = I lt⊕̄ψ(Îr − Îrt ), (2)

where ψ is the formulation of the process that EHN extracts

the HF map Îrm. The operation ⊕̄ represents the combination of

the intermediate image I lt and Îrm. During the training process,

Îrm is directly added to I lt . In the testing process, Îrm is utilized

based on patch matching results, which is elaborated in Sec.

III-B. Loss of EHN is defined as MSE between Ih and the

raw ground truth image.

III. ONLINE COMPENSATION

Different with the training process, we retrieve HR reference

images {Ir1 , Ir2 , ..., IrK} online for compensation with the

method proposed in [14] during the testing process. Then,

the aligned HR references {Îr1 , Îr2 , ..., ÎrK} are derived by

aligning each Ir to I lt and the HF maps {Îr1m , Îr2m , ..., ÎrK
m }

are later extracted from the aligned references. As pixels in
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each aligned reference Îr are still not exactly corresponding

to the pixels at the same position of I lt ,extracted feature

values of Îrm can not be directly added to the intermediate

up-sampled image I lt . Thus patch matching is used to guide

the combination of Îrm and I lt .

A. Patch Matching

There are usually significant differences on illumination,

color and resolution between the intermediate SR image I lt
and each aligned HR reference Îr. As a result, for the purpose

of better matching results we first utilize the intermediate SR

reference image Îrt mentioned in Sec. II-B that shares similar

resolution-level with I lt for matching. Then, we adjust Îrt to

reduce the effect of illumination difference:

Îr
′

t = (Îrt − τ(Îrt ))
σ(I lt)

σ(Îrt )
+ τ(I lt), (3)

where Îr
′

t is the transform result, τ(·) and σ(·) are the mean

and standard deviation values of all pixels of the image,

respectively. Then, I lt is split into overlapped query patches

of size
√
n × √

n at the step size 4. And we search for the

corresponding patches of the query patches within a search

window in Îr
′

t .

Since small patches contain little structural information of

raw images, patch matching results at small patch size are not

accurate. Thus we perform patch matching between I lt and

Îr
′

t with large patches. Considering it is impossible for each

patch in I lt to have an exact corresponding large patch in Îr
′

t , a

method that adaptively adjusts patch sizes according to patch

difference [12] is adopted for more accurate patch matching.

Let Pi denote the query patch of size
√
n × √

n in I lt
centered at position i and Qi

j denote the
√
n×√

n candidate

patch in Îr
′

t centered at j. We search for the best matching

candidate patch of Pi within the search window of size

3
√
n× 3

√
n centered at i in Îr

′
t . The patch distance between

Pi and Qi
j is defined as:

d(Pi,Q
i
j) = ||Pi −Qi

j ||22 + ρ||∇(Pi)−∇(Qi
j)||22, (4)

where ∇ is the operation that calculates the gradient of the

patches and ρ is the weighting parameter, which is set to be

10 in this paper. Besides, DC components of the patches are

removed before distance computation.

The value of d(Pi,Q
i
j)/(

√
n×√

n) is defined as gradient

mean square error (GMSE) and Gmin
i is set as minimum

GMSE value between the query patch Pi and the candidate

patch Qi
j . Patch matching is performed at initial size 21× 21

and changed to a smaller size if the value of Gmin
i is too large

according to Eq. 5.

√
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

21, Gmin
i <= 200,

17, 200 < Gmin
i <= 500,

13, 500 < Gmin
i <= 800,

9, Gmin
i > 800.

(5)

The sliding step of patch matching is set to be
√
n/3. Then,

a closest candidate patch Qi
j0

is found. However, a large step

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Testing images from (a) to (h).

size may result in missing a better matching patch in Îr
′

t . Thus

we further search a candidate patch of the same size as Qi
j0

within a (2 × √
n/3 − 1)2 size search window centered at

position j0 in Îr
′

t , with the step size of 1.

B. External High-Frequency Information Utilization

After patch matching, pixels at the same position in the

matched patches between I lt and Ir
′

t are matched. Then, the

EHF maps are combined with I lt based on the pixel-wise

matching correlation. For each pixel p in I lt , we define the

set of its matching pixels in K EHF maps as Ωp. Then, the

final fused external HF map I lm that can be directly added to

I lt is obtained by:

I lm,p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
q∈Ωp

Îrm,q · e−d(p,q)
100

∑
q∈Ωp

e
−d(p,q)

100

, |Ωp| �= 0,

0, |Ωp| = 0.

(6)

|Ωp| represents the number of elements in set Ωp. d(p,q) is

the GMSE value between the patches that p and q belong to.

Finally the result SR image is obtained by directly adding

the final extracted HF map I lm to the intermediate reconstruct-

ed SR image I lt as Ih = I lt ⊕ I lm.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

We train our DHN based on 91 images in [3] and 200

training images in BSD500 [15]. The images are first trans-

ferred to Y CbCr color space and only utilize the Y channel.

The chrominance channels are later simply up-sampled by the

bicubic method in the testing process. Then, we generate sub-

images at the size of 32× 32 from images in the dataset with

the stride step of 16 pixel. Down-sampling method in [16] is

utilized that images are first blurred and then down-sampled

with factors of 2, 3 and 4. As a result, around 10 thousand sub-

images are obtained for training. The learning rate is initially

set as 10−4 and drops to 10−5 after 50,000 iterations.

We compare our algorithm with different SR methods

including a typical learning-based SR method [5] (denoted as

NE) and two online compensation methods [12], [14] (respec-

tively denoted as Landmark and GSSR). For fair comparison,
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(a) Ground Truth (b) NE [5] (c) Landmark [12] (d) GSSR [14] (e) Baseline [9] (f) Proposed Method

Fig. 3. Subjective results of different methods with magnification factor 3 for testing images Fig. 2(d) and Fig. 2(h). Some regions that have HF signal have
been marked in red rectangle and enlarged for comparison.

TABLE I
PSNR and SSIM values of different methods. (·) denotes performance gain

of the proposed method compared with other methods.

Scale Metrics NE Landmark GSSR Baseline Proposed

2

PSNR
28.40 30.41 31.39 32.56 33.66
(5.26) (3.25) (2.27) (1.10) -

SSIM
0.822 0.860 0.894 0.922 0.937
(.115) (.077) (.043) (.015) -

3

PSNR
27.25 29.31 29.20 29.48 30.93
(3.69) (1.63) (1.74) (1.45) -

SSIM
0.796 0.826 0.840 0.849 0.884
(.088) (.058) (.044) (.035) -

4

PSNR
25.61 27.71 27.69 27.85 29.35
(3.74) (1.64) (1.67) (1.50) -

SSIM
0.740 0.786 0.785 0.791 0.835
(.095) (.049) (.051) (.044) -

we add the retrieved HR reference image to the training set of

learning-based method NE. Besides, the intermediate results

derived by IHN [9] are also shown as the baseline. The

baseline is one of the newest deep based SR methods without

using external references. The testing images are chosen from

the Oxford Building dataset1 and the online retrieval is also

performed over it. There are totally 8 testing images named

from (a) to (h) for comparison, as shown in Fig. 2. We set

K = 4 for the number of reference images. More experimental

results can be found on our website2.

B. Experimental Results and Analysis

Table I shows objective results of 8 chosen images. Our

proposed method obtains the best average PSNR and SSIM

values in all cases.

Subjective results are shown in Fig. 3. The edge-preserving

based method NE successfully obtains more sharp edge but

fails to reconstruct other more detailed HF signals. Although

Landmark has successfully combined some HF signals of

HR references, artifacts sometimes are brought by incorrect

1http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
2http://www.icst.pku.edu.cn/struct/Projects/DualSR.html

patch matching results or inappropriate patch blending. Sparse-

based method GSSR did not consider position feature of the

reference patches. While there are many similar reference

patches, more noise are brought into GSSR’s SR reults.

Edge feature combined baseline method [9] has also well

reconstructed some HF signal. However, without information

from HR references, it fails to reconstruct the detail in complex

regions. On the contrary, our method achieves the best result

in HF information reconstruction.

TABLE II
PSNR and SSIM values of VDSR and the proposed method.

Metrics
VDSR Proposed Method

2 3 4 2 3 4

PSNR
33.12 29.90 28.34 33.94 31.28 30.04
0.81 1.38 1.70 - - -

SSIM
0.931 0.860 0.803 0.942 0.892 0.856
0.011 0.032 0.053 - - -

We also compare with one of state-of-the-art methods,

VDSR[8]. Due to the different bicubic down-sampling con-

figuration, we have retrained our network by utilizing VDSR

as the IHN under the new configurat. The results have been

shown in Table II. Our method still obtains the gain over

VDSR.

V. CONCLUSION

In this paper, we propose a deep online compensation

network for image super-resolution. With the IHF map es-

timated by IHN, we initially obtain an intermediate SR result

by combining the IHF map with a simply up-sampled LR

image. Then, the EHF maps are further extracted from online

retrieved HR references for compensation. The final SR result

is obtained by adding the fused EHF map to the intermediate

SR result. Extensive experimental results demonstrate that the

proposed method can robustly extract external HF maps from

the reference images and significantly improve the SR results

based on the compensation brought by the EHF maps.
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